
LogicPalet Version 10.x.x.x

This software tool is designed to help students master the basic concepts of symbolic logic, with

emphasis on the semantic aspects of it. It is written by Jan Denef.

As of version 10.0 the software comes in 3 flavors: LogicPaletWin for Windows, LogicPaletMac for

Mac, and LogicPaletLinux for Linux. These are desktop apps and use on each platform a native user

interface (based on Wpf for Windows, Cocoa for Mac, and Gtk for Linux). The software is written in

DotNet Standard 2.0, using Eto.Forms 2.4 for the user interfaces. Get it at http://www.logicpalet.com!!!

Short Overview. The software enables you to write logical formulas very fast by clicking on buttons,

and to find any syntax errors. LogicPalet can verify whether or not a logical formula is true in a given

GeoWorld: this is a structure consisting of figures on a chessboard. Such a GeoWorld can be easily

constructed and graphically presented by LogicPalet. It can also explain why a formula is true (or false)

in a given GeoWorld. Using the software IDP as a plugin, LogicPalet can generate a GeoWorld

satisfying given conditions. Moreover, LogicPalet can determine whether or not a logical formula is true

in a given DecaWorld, and explain why. A DecaWorld is a structure with less than ten elements and

any number of unary and binary relations, and constants. It also enables you to enter the description of

a DecaWorld into your computer very fast. Using the software SPASS as a plugin, LogicPalet can verify

whether two formulas are logically equivalent, or whether a formula is a logical consequence of given

formulas. This is the component AskSpass. Another component of LogicPalet is the ProofAssistant

which enables students to build correct formal proofs using very simple deduction rules. Moreover

LogicPalet supports online OnlineHomework: the students have to solve exercises posted on the

internet by the instructor. The grading of the homework is done online and the results are sent to a

database. LogicPalet also contains the HomeworkEditor to enable instructors compile exercises and

post them on the internet. Having all these components integrated in one, makes LogicPalet a versatile

didactical tool.

A very important kind of exercises is to translate statements in natural language to logical formulas. If

a translation is faithful (in the sense that its correctness does not depend on the special meaning of the

used relations) then it is logically equivalent to any other faithful translation. The student can use

AskSpass to verify whether his translation is correct (and faithful) by comparing it with the translation

of the instructor (this is done automatically for online homework). For statements about GeoWorlds the

LogicPalet automatically tries to generate a counterexample if the translation is wrong. Extensive

experiments at KULeuven show that the plug-ins SPASS and IDP are almost always powerful enough

for these tasks.

We recommend instructors to avoid translation exercises involving equivalence relations, because the notion of faithful

translation is not very natural in that case. Alternatively you can only require that the translation is faithful with respect to a

specified set of constraints (e.g. the constraint that a given relation is an equivalence relation). The homework component of

LogicPalet can verify whether the student’s translation is faithful with respect to specified constraints.

The logical formulas have to be written in Unicode syntax.

Unicode syntax

 ∧ and ⇒ implication ¬ negation ∀ for all

 ∨ or ⇔ equivalence ≠ not equal ∃ there exists

Unicode syntax for quantifiers:

∀x: Triangle(x) ∃x: Triangle(x)

http://www.logicpalet.com/
https://dtai.cs.kuleuven.be/software/idp/
https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover/

Don’t forget the colon! The scope of a quantifier is all what follows after the colon, unless brackets

regulate otherwise (weak quantifier binding). Blanks are irrelevant, except that they are not permitted

inside variables, constants, relation and function identifiers.

Variables, constants, relation identifiers and function identifiers are strings consisting of letters or digits,

starting with a letter and not containing any blanks. Such strings are called identifiers. You can use three

kinds of brackets: () { } [].

Operator binding

(strongest binding) ¬ ∧ ∨ ⇒ ⇔ ∀ ∃ (lowest binding)

For identical connectives, the binding increases from left to right. For example:

 P ∧ Q ∧ R is P ∧ (Q ∧ R)

 P ∧ Q ∨ R is (P ∧ Q) ∨ R

 P ⇒ Q ⇒ R is P ⇒ (Q ⇒ R)

 P ∧ Q ⇒ R is (P ∧ Q) ⇒ R

 P ⇒ Q ⇔ R is (P ⇒ Q) ⇔ R

 ¬P ∨ Q is (¬P) ∨ Q

Alternative syntax. Instructors can change settings so that the LogicPalet works with other syntax

preferences: for example using → and ↔ instead of ⇒ and ⇔; or using strong quantifier binding where

the scope of a quantifier (∀x) or (∃x), with no colon, is the smallest subformula following it.

Smart Write and Jump. For example, if you click on the button “LeftOf” then LeftOf(*,*) is written

in the focussed text field. Next, when you click on the button “x” then the first * is replaced by x and

the caret moves automatically to the next *, and so on. In this way you never have to type the commas

and the brackets. There are three sets of such buttons in window FormulaWriter: Default Buttons,

Alternative Buttons and Custom Buttons. The Custom Buttons can be edited (i.e. changing the text that

they write). Make your choice via the menu items “View > Buttons >”. Smart Write and Jump is also

implemented for the quantifiers, just try it!

Syntax verification. You can verify whether a formula contains no errors with respect to the Unicode

syntax, by selecting one or more formulas (separated by ;) in window FormulaWriter and clicking on

“Check Syntax” in the drop-down menu “Tools”. This does not verify whether the names of variables,

constants, relations and functions are different, or whether they have the correct number of arguments.

But this can be verified by clicking on “Get Declarations” in the drop-down menu “Tools” (if there are

no free variables).

Tip

Many labels, buttons and menu items have tool tips: if you point to them with the mouse, then some text

will pop-up giving explanation.

AskSpass. By clicking on “A ⇔ B ???” in the drop-down menu “AskSpass”, you can ask whether the

formulas A and B are logically equivalent. This only works when there are no free variables, such

formulas are called sentences. Your formulas have to be in the text fields A and B of window

FormulaWriter. Similarly, by clicking on the menu item “AskSpass > A ⇒ B ??? ” you can ask whether

B is a logical consequence of A. Here A can be one or more sentences (separated by ;). Be careful to

stop Spass when it is running to long and consuming to many resources. Indeed, Spass may never find

an answer to your question… The plugin SPASS was developed by the Max Planck Institut Informatik.

When you click on the button A, the content of the text field A is deleted and replaced by the content of

the clipboard. The same holds for button B. Instead you can also drag-drop from any source into button

A or B.

GeoWorld. You can make a GeoWorld by clicking on the menu item “Make a GeoWorld” in the drop-

down menu “GeoWorld”. This opens a new window: the GeoWorld window. A GeoWorld consists of

figures on a chessboard. The figures can be triangles, squares or pentagons. The logical formulas that

https://www.mpi-inf.mpg.de/departments/automation-of-logic/software/spass-workbench/classic-spass-theorem-prover/

can be interpreted in such worlds can contain the following relation identifiers. Unary relations:

Triangle, Square, Pentagon, Small, Medium, Large. Binary relations: Smaller, Larger, LeftOf, RightOf,

FrontOf, BackOf. Ternary relation: Between. The interpretations of these relation symbols are the

obvious ones: Larger and Smaller have to be interpreted as strictly larger and strictly smaller. LeftOf

(x,y) is interpreted as “the column of x is on the left of the column of y”, FrontOf(x,y) is interpreted as

“the row of x is in front of the row of y”, and so on. Between(x,y,z) is interpreted as "x is strictly between

y and z, on the same column, same row or same (not necessarily principal) diagonal". Each figure can

have at most one name. LogicPalet can determine whether or not a logical formula (of the above kind)

without free variables is true in a given GeoWorld. For this you have to select that formula in window

FormulaWriter, and click on the menu item “GeoWorld > Evaluate in GeoWorld ”. You can evaluate

more than one formula at the same time: for this you have to select all these formulas separated by ; and

click on “Evaluate in GeoWorld”. You can import/export a GeoWorld from/to a file or from/to the

clipboard, using the drop-down menu “File” in window GeoWorld.

LogicPalet can also explain why a logical formula (of the above kind) is true (or false) in a given

GeoWorld. For this you have to select that formula in window FormulaWriter, and click on the menu

item “GeoWorld > Why True/False ”. This opens a new window “WhyTrueFalse” providing full

explanation, by clicking on the links Why? for all the components of the formula. For this it is necessary

that all figures in the GeoWorld are given a name. This can be done by clicking on the menu item “Tools

> Name All” in the window GeoWorld, or by editing each figure separately. Note that it is impossible

to edit the GeoWorld while the window WhyTrueFalse is not closed (unless it relates to a DecaWorld).

Clicking on the menu item “GeoWorld > Generate a GeoWorld”, the software tries to generate a

GeoWord satisfying given conditions. See the tooltips for more information. This uses the plugin IDP

that was developed by the group Knowledge Representation and Reasoning (KRR) at the KULeuven.

GeoWorld is inspired by, but different from, the commercial software called Tarski's World published

by CSLI at Stanford University. The component GeoWorld of LogicPalet is not a product of CSLI.

An important kind of exercises is to determine whether or not a given logical formula is true in a given

GeoWorld or DecaWorld. After finding the answer, without using LogicPalet, the student uses the

software to see whether his answer is correct. If his answer is not correct, then the student can find his

error using the tool “Why True/False” as explained above.

DecaWorld. You can make a DecaWorld by clicking on the menu item “Make a DecaWorld” in the

drop-down menu “DecaWorld” of window FormulaWriter. This opens a new window: the DecaWorld

window. A DecaWorld is a structure with less than ten elements and any number of unary and binary

relations, and constants. You can choose the names of these relations as you wish (any identifier is

allowed). The elements of the universe have to be the digits 1, 2, 3, …, N, with N < 10. Functions are

not allowed, but you can work with as many constants as you want. In the description of the relations

and constants, blanks are irrelevant. For the description of the unary relations: write the elements without

commas between them. For the description of the binary relations: write the tuples (without commas

between them) in condensed form (aA,bB) = (a,b)(a,B)(A,b)(A,B). For example (12,345)(5,1) is the

condensed representation of the following set of tuples: (1,3)(1,4)(1,5)(2,3)(2,4)(2,5)(5,1). In this way

relations can be represented in a very practical way! You don’t have to memorize these conventions: if

you point with the mouse to the column headers in the DecaWorld window, then the tooltips will popup.

You can import/export a DecaWorld from/to a file or from/to the clipboard, using the drop-down menu

“File” in window DecaWorld.

LogicPalet can determine whether or not a logical formula without free variables is true in a given

DecaWorld. For this you have to select that formula in window FormulaWriter and click on the menu

item “Evaluate in DecaWorld” in the drop-down menu “DecaWorld”. You can evaluate more than one

formula at the same time: for this you have to select all these formulas separated by ; and click on

“Evaluate in DecaWorld”.

LogicPalet can also explain why a logical formula (without free variables) is true (or false) in a given

DecaWorld. For this you have to select that formula in window FormulaWriter, and click on the menu

https://dtai.cs.kuleuven.be/software/idp/
http://www-csli.stanford.edu/

item “DecaWorlds> Why True/False”. This opens a new window “WhyTrueFalse” providing full

explanation, by clicking on the links Why? for all the components of the formula. It is necessary that all

elements in the universe of the DecaWorld are given a name. This can be done by clicking on the menu

item “Tools > Name All” in the window DecaWorld. Note that it is impossible to edit the DecaWorld

while the window WhyTrueFalse is not closed (unless it relates to a GeoWorld).

Online Homework. For online homework, click on the menu item “Homework > Homework Tasks” in

window FormulaWriter. A new window “OnlineHomework” will open. Click there on the button “Help”

and follow the instructions. Remember that you have to be connected to the internet. The instructor can

choose between two grading policies. One policy is that only the grades of correctly solved exercises

are kept on the server and that the student can keep trying. Another policy is that the student has to try

to get it right at once. If the answer is wrong the first time then the grade "wrong" is kept on the server,

but the student can keep trying and eventually get the grade "correct but not at first". Each exercise

assignment can have a different policy. The grading policy is shown in the status bar at the bottom of

the window. The date and time of when an exercise is solved by the student, is not sent to the database,

to protect privacy. By clicking on the button “Grades” the student can see his grades.

An important kind of exercises is to determine whether a given formula B is a logical consequence of

some given formulas A1, A2,… If it is a logical consequence, then the student has to give a formal proof.

This can be done by the ProofAssistant. If it is not a logical consequence then the student has to give a

counter example, that is a structure in which A1, A2,… are true and B false. Often one can take a

DecaWorld for such a structure, and then the student can verify with the software whether his

DecaWorld is indeed a counterexample.

ProofAssistant. The student can construct formal proofs using the ProofAssistant. Click on the menu

item “Proofs > ProofAssistant” in window FormulaWriter to open the window ProofAssistant. With this

tool one constructs correct formal proofs using the KE deduction rules, which are much simpler than the

deduction rules used in most other existing proof assistants. Such proofs are called KE proofs. The tool

is inspired by, but different from, the software WinKE developed by Ulle Endriss.

To construct a KE proof that a given sentence B is a logical consequence of a given set T of sentences,

one has to derive a contradiction from T and the negation of B, using the KE rules of deduction. It is

allowed to make case distinctions. For any sentence C one can split up the proof (at any stage of its

construction) in two cases: the case that C is true and the case that C is false. This yields two branches.

Usually one takes for C a sentence that appears already in the proof or a sub-sentence of such a sentence.

Using the tool, one first selects such a sentence before clicking on the button “Case Distinction”.

Repeated case distinctions yield a proof tree which might have many branches. A KE proof is complete

if each branch contains a contradiction, meaning that the branch contains both a sentence and its

negation. Such a branch is called a closed branch.

A KE deduction is always based on sentences that appear in the same branch and results in appending

the conclusions to that same branch. In the ProofAssistant that branch has to be activated first (unless

there are no case distinctions), by selecting the corresponding case and clicking on the button “Activate

Branch”. To apply a deduction rule, first select the sentences on which to apply the rule (the

assumptions) and click on the button for that rule. The results of the deduction are then appended to the

activated branch. After you obtained both a sentence and its negation in the activated branch, you have

to select these two sentences and click on the button “Contradiction” to formally close that branch. Your

KE proof is complete when all branches have been closed in this way.

Sometimes, after applying a deduction rule, some of its assumptions might not be useful anymore in the

currently activated branch. Such sentences can be marked in order to remind the user not to use it

anymore in the activated branch. Attention: it might be necessary to unmark some of these when another

branch is activated!

For simplicity of the deduction rules, the ProofAssistant does not support using formulas which contain

an inequality ≠. This does not hurt because an inequality can always be replaced by the negation of an

equality.

https://staff.fnwi.uva.nl/u.endriss/WinKE/

Next we give a complete list of the KE rules of deduction.

The KE Deduction Rules

The ∃ Rule. From ∃x: A(x) one deduces A(c), where c is a new constant that does not yet appear in the

current branch, and A(c) is obtained from A(x) by replacing each free occurrence of the variable x by c.

Moreover, from ¬∀x: A(x) one deduces ¬A(c), with c and A(c) as above.

The ∀ Rule. From ∀x: A(x) one deduces A(t), where t is any term without variables, and A(t) is

obtained from A(x) by replacing each free occurrence of the variable x by t. Moreover, from ¬∃x: A(x)

one deduces ¬A(t), with t and A(t) as above.

The Propositional Rule. The following table shows the deductions that are allowed by the Propositional

Rule, where ¬A denotes the complement of A. The complement of a sentence A is C when A is of the

form ¬C, and else the complement of A is ¬A.

Assumption 1 Assumption 2 Conclusion 1 Conclusion 2

A ∧ B A B

A ∨ B ¬A B

A ∨ B ¬B A

A ⇒ B A B

A ⇒ B ¬B ¬A

A ⇔ B A B

A ⇔ B B A

A ⇔ B ¬A ¬B

A ⇔ B ¬B ¬A

¬¬A A

¬(A ∧ B) A ¬B

¬(A ∧ B) B ¬A

¬(A ∨ B) ¬A ¬B

¬(A ⇒ B) A ¬B

¬(A ⇔ B) A ¬B

¬(A ⇔ B) B ¬A

¬(A ⇔ B) ¬A B

¬(A ⇔ B) ¬B A

An instance of the Propositional Rule that uses only one assumption is called a Unary Propositional

Rule. When two assumptions are used it is called a Binary Propositional Rule.

The Equality Rules. When the given sentences contain equalities or inequalities one also needs the

Equality Rules. We now describe the equality rules in case that the given sentences do not contain

inequalities:

The Assumption-free Equality Rule. Using no assumptions one deduces any equality of the form t =

t, where t is any term without variables.

The Unary Equality Rule. From any sentence A one deduces any sentence B obtained from A by

replacing (possibly several times) any sub-formula of the form t = u by u = t, where t and u are terms.

The Binary Equality Rule. From any sentence A and a sentence t1 = t2 (with t1 and t2 terms without

variables), one deduces any sentence B obtained from A by replacing (possibly several times) t1 by t2

and/or t2 by t1, and/or replacing (possibly several times) any sub-formula of the form t = u by u = t,

where t and u are terms.

Note that the Unary Equality Rule is a special case of the Binary Equality Rule.

When the given sentences contain inequalities then there is an additional equality rule which states that

one can replace any inequality t≠u appearing in a sentence by ¬t=u. Clearly it is simpler to replace all

inequalities by negations of equalities before one starts using the ProofAssistant. That is the reason why

the ProofAssistant does not support inequalities.

